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ABSTRACT

A shear flow aerodynamic theory for steady incompressible flows

is presented for both the lifting and non-lifting problems. The unique

s	 feature of the present theory is the consideration of the slow variation s'

of the boundary layer thickness. The slowly varying behavior is treated

by using the method of multi-time steles. The analysis begins with

the elementary wavy wall problem End,.through Fourier superpositions

over the wave number space, the shear flow equivalents to the aero-

dynamic transfer functions of classical potential flow are obtained.	 ti

The aerodynamic transfer functions . provide integral equations which 	 h

relate the wall pressure and the upwash. Computational results are

presented for the pressure distribution, the lift coefficient, and

the center of pressure travel along a two dimensional flat plate in a

shear flow. The aerodynamic load is decreased by the shear layer,

compared to the potential flow, while the variable thickness shear

layer decreases it less than the uniform thickness shear layer based

upon equal maximum shear layer thicknesses.



NOMENCLATURE

a - perturbed characteristic length in mean flow direction

A, A0, Al - Aerodynamic influence functions in physical space

IT, A0•, A1 • - Aerodynamic influence functions in wave number space

Av - See Equation (16)

b - Wing span

Q - Wing chord

f(x,y) - Surface Contour (Figure 1)

7 - Wavy wall amplitude

Iv ( ) - Bessel function of second kind of order v

K, KA, KB - Aerodynamic kernel functions in physical space

T. KA", KB• - Aerodynamic kernel functions in wave number space

L - Characteristic length in mean flow direction

L. L 1 - See Equations (16) and (21)

N - Exponent in shear layer velocity profile (see Eq.(4 )).

p(x,y) - Fluid perturbation pressure

p - Wavy wall fluid pressure

pw (x,y), pwo , pwl - Wall pressure

ŵ - Wavy wall fluid pressure at wall

R - a (a2 + y2)1/2

R =- Rd

U, v, w - Fluid perturbation velocities j n x, y and z directions

U - Shear flow mean velocity

U1 - Free stream velocity

W (X,Y) - Wash = U12x(x,y)
W • (x,y) - Wavy wall upwash

Weq - See Equation (40)

l /
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x, y, z - Coordinate axes

X1. y'.	 z' - (see Figure 1)

E, n, G - See Equation (8)

02 - = 
32	 32	 a2
a X-z	 ayz 	a-

P - Fluid density

t - Gamma function

6, 6(x.y) - Boundary layer thickness

6m - Maximum boundary layer thickness along chord
(trailing edge)

as Y - Wave numbers in x and y directions

a, .T . 
a = a 6max,•Y - Y 6max

e "• - 6max/t or 6max/c

e^ = 6Max/b

2 + .1in main text
fluid kinematic viscosity in appendix.

CL total lift / ( Z	 p U2.c)
1.

CM - a moment about leading edge / L 2 p U2	 c2)
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I. INTI:ODUCTION

To account for the presnce of the boundary layer adjacent to any

solid surface in a fluid flow theoretical analyses of the shear flow

P
	

effect have been made by many researchers [1-20]. Common to all the

above analyses is the assumption of the uniform thickness of the

boundary layer initially present before the solid boundary surface is

1
	

deformed. However, the boundary layer normally grows in the mean flow

direction and one naturally would like to know how the boundary layer

thickness variation affects the aerodynamic load on the solid surface.

This paper deals with this problem but is restricted to the steady,

incompressible flow with a slowly varying boundary layer. Similar reasoning

can be extended to unsteady and compressible flows.

Since this report is an extension of Ventres' work [19], we first

briefly review and quote his uniform thickness results and then develop
	

l^

a theory for the slowly varying boundary layer problem.

1

1

1

1

1
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II. BRIEF REVIEW OF VENTRES' RESULTS

Consider a steady, incompressible shear flow over a surface whose

deflection is given as z = f (x,y). See Figure 1. The surface deflection

produces a small disturbance from an initially parallell shear flow

u = U(z), v n w s 0. The function U(z) is constant for z > d so that

the shear layer is !imited to the region 0 < z < d adjacent to the

surface.

With the choice of the mean flow U(z) - U N(z/a) I/N Ventres was

able to relate sen?-analytically the upwash W(x,y) everywhere in the

z u 0 plane to the perturbation pressure distribution on the wing p(x,y)

(recall that we are dealing with the lifting problem) according to

W(x,y) a 11 K(x-E, Y-n)d&dn
Ul 	wing	 pUM

where W(x,y) 2 af (x,y) and f (x,y) is the wall deflection. The
Ul	 ax

two-dimensional kernel function K(x), which is of fundamental importance,

is s:wwn in Figure 2 for N - 7 and 11. Also shown is the potential flow

result,

K ^l • 1
WE—

which is labelled in the Figure as N - 	 All three curves have a common

asymptote as x/ a + W , and in fact are essentially identical for x / 6>2

or so. Since K physically is the upwash caused by an impulse pressure,

this implies that the influence region of the shear layer is limited to

a distance on each side of the source point comparable to the shear layer

?BFI t? [.a
jilU

^.Y

y

1 ^

a
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thickness, or the shear layer effect is "nearly local". This points

up the possibility of accounting approximately for the effect of

slowly varying boundary layer thickness by inserting a variable d(x)

directly into Ventres uniform thickness shear layer theory. The

problem is then how to insert the variable 6(x j appropriately. The

rest of this paper will demonstrate the reasonable way of doing it

using the multi-time scale concept (21).
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III. SHEAR FLOW WITH SLOWLY VARYING BOUNDARY LAYER THICKNESS

fi 1

x

1

r

r

(a) Governing Equations And Boundary Conditions

Detailed order of magnitude analysis given in the Appendix shows

that the perturbation pressure p(x,y,z) satifies

aU
V 2p - 2 az ap n 0	 (1)

U az

The associated boundary conditions are [12, 191

- -VU (z = z ° ) aw	 (2)

131Z
	 TX
znz0

on the solid surface as zo - 0, where

w	 . U i
	

. of

	

zm z0 	z=z° yx

and the finiteness condition

P + 0	 as	 z - v	 (3)

We assume the mean flow,

U ` JUI 	 z > 4(x,Y)f	 (4)U, 
tZ	 1

1IN 	 z ` 5 (x,Y)
I (x, y)

While assuming a discontinuity in the mean flow velocityagradient across

z n 6(x,y), we impose the continuity of the pressure and the pressure gradient

1
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across the boundary layer edge, i.e.

at z a 6(x,y)

P(x.Y,z - 6 (x,Y)) - P(x ,Y, z =6+(x,y))

and ap (x,Y. z -6 (x.Y)) - &(x ,Y,z-6+(x .Y))	 (S)
"az	 a:

"-

	

	 From Equations (1) and (4) the pressure within the shear layer

region satisfies

V29 - 2 ap - 0	 (6)
Ni 3z

	

► 	 whic-h will be solved along with the wall boundary condition,

Equation (2), i.e.

	

o U2 (z=z0) a2f	 as z0 -#'0	 (7)
az	 3XT

z-z0

and another boundary condition at the boundary layer edge to be derived

from the field equation outside the boundary layer satisfying the

finiteness condition far away from the solid surface (see Equation (14)).

(b) Normalization

F
In view of the slowly varying behavior it is convenient to write

the boundary layer thickness
I
j	 6 * 6 (eE. E'n)

It

	 ^

k

	

	
where c << 1 and	 Co << 1. Here, a and c' are non -dimensional para-

meters characterizing the slow variation of the boundar y layer thickness
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in the x and y directions respectively, e.g. c • d max/ R and c  n

a^ . 6max is the trailing edge shear layer thickness which is
b

usually the maximum along the chord of an airfoil and b is the wing

span. E and n are non -dimensional coordinates defined as

E rl • r
	

(8)

MAX

The definition for S has the advantage that all loundary conditions

are applied on constant values of ; , e.g. t = 0, n 1 and ►

(corresponding to z - 0, a(x,y), and + a).

(c) Wavy Wall Problem - Elementary Solution

Consider a wavy wall whose profile is describ :d by the real

part of the complex function

f(x, y) - f e 
i(ax+Yy)

T e i(aE+Yn)
	

(9)

where a z a amax , Y- Y ate.

The wavy wall will generate a perturbation pressure field of the following

form.

P a p(4. cE.. c 'ni 	 Oi(ME+Yn)

in which the slight amplitude modulation due to the slow boundary

layer variation is manifested by the functional dependence of p on

cE.c'n c and e'. We further assume the following series expansion

for p since e « 1 and e' << 1[21].

(lo)

^.r

J
^	 1

i

a
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1

1

li

P( G. cc , E 'n; a:Y:c. c ')	 PpCZ,EE,E'n:a.Y)

+ c l (G. CE, E 'n: a.Y)
	

(11)

+ 61Pl'(z, c9 A ;a . —y) + H.O.T.

Rewriting Equation (6) in terms of E, n. G rather than x, y, z by

means of Equation (8) and substituting the assumed wavy wall pressure

solution, Equations (10) and (11), into the resultant equation, one can

show that the lowest order governing equation for p 0 is

t

'PO - 2 'PO - 6 ;2 pO 0	 (12)
-CTN; 2 C K6max

where 6 is t'& •ariable boundary layer thickness. The higher order

equations, which are not shown here, have lower order solutions as

their forcing functions.

The required wall boundary condition for solving Equation (12)

is obtained by substituting Equations (9) and (10) and (11) into

Eoiation (7) and identifying the zeroth 

(

order relation, namely

dpO	A p/a 6	 \2 OZ(z^ ;O /\ max	 1	 (13)
a; z

nz0 ` 6max J 6	 d max f

as ;O - 0. The higher order wall boundary conditions are trivial,

1P0 for all i > 1	 as C0 ^ 0

C40

Mother boundary condition at the edge of the shear layer for solving

Equation (12) is obtained by setting N n d in Equation (12) and applying

C:



,sx .

the finiteness condition aac G y • r 144	 )`

,p

s 

♦ // d .R p . 0	 (14)

ac lTMax

Everywhere outside the boundary layer and in particular at the boundary layer

edge c - 1 because of the continuity of the pressure and the pressure

gradient across { a 1.

Equation (12) subject to boundary conditions (13) and (14) gives

the wall pressure solution (19]r

1 pw ^.a.Y,6(x.y)) - ACa.Y.d(X.y)) 
W.(a .Y)	 21 f̂

OUl	 Ul	 211

where	
2 
)"N
 L(Rd)

Av R R6

pv;. yr 1-v

r(lw)

r , zz C;^ Tart

011L ^ ^I

L(Jtd) • Iv(R6)<'31,`_i(Rd)

1_V 6)+Il_v(R6)

w* (a,Y) °.i a f .(2102

U 

The solution is the same as Ventres' except his uniform thickness has

been replaced by the variable thickness d(Y.y). henceforward, the 0

subscript on pw is dropped, for simplicity-

0

(15)

(16)
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Thus we have obtained the pressure amplitude function for the

wavy wall problem using the shear flow model of slowly varying boundary

layer. The pressure amplitude is proportional to the upwash W
as expected in a linear theory.

^l

For an arbitrary wall deflection we can use the superposition

property of a linear theory to form Fourier integrals. However the

Fourier superposition should be performed carefully as shown in the

following two sections.

(d) Pressure Load for an Arbitr imy Wall Deflection - Non-lifting Problem

/

	

	
We have just derived the Unear relation for wall pressure

amplitude (15) for a wavy wall problem. Through the linear super-

position of the wavy wall_soluti,3ns over all possible wave; numbers,

the wall pressure due to any properly behaved wall deflection is

a, r

Pw (x,Y.6(x,Y)) J f Pw (a,Y:6(x.y)) ei(ax+Yy) dady 	 (17)

PU12 	PU

Substitution of Equation (15) into Equation (17) yields

1	 pw (x,Y,a(x:y))- * ^2 f 7C(a,Y:6(x.Y)) r Ce.Y) a 1(ax+Yy)dady	 (18)
FU-1 2	 n	 U 

To write Equation (18) as an integral in physical space, we define

p!

2

•^ 9
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rA(^c',Y'.6(x.Y)^=	 1 2 1i ACa,Y;6(x.Y)) I, -i(ox'+YY') aady	 (18a)
\2n -°

which implies

• A ', '' 6 (X,Y)) 
ei(ax'+Yy')'dx d '	 (18bA(a,Y;6(x,Y)) ' j1 Cx Y	 Y	 )

In addition, we have

W (x.Y) ' J 1 l z ff W*(a,Y) e-i(ox+yY) dady	 (18c)
—W

 
1
	 U

Using (18a) and (18c), one can easily show that Equation (18) is

equivalent to

pw (x.Y,6(x.Y)) = 1f A (x-x ', Y-Y1;6(x.Y)) W (x',Y') dx'dy'	 (19)

A112	 U 

Alternatively, one can arrive at Equation (19) by using the Fourier

convolution theorem directly from Equation (18) with the recognition

that Equation (18a) is a definition of A(x',y'; 6(x,y)) in terms of

K(r,y;d (x,y)) and 6(x,y) is treated as irrelevant to the Fourier integrals.

Either of Equation (la) and Equation (19) can be used to calcniate

the wall perturbation pressure for a given upwash W(x,y). However, a

drastic reduction of cumputation time can be made by recognizing that

the quantity {1 - 6(x,yn -is everywhere smaller than one except near

Smax

the leading edge where 6(x,y) - 0. Hence, we can i>xpand the function A

in Equation (18) in terms of a power series of (1 - 6(x,y)); the
t_v'
max

resultant pressure solution presumably will be valid everywhere except



-

- 11 -
	 GR1GI':^	 r_.`_^' to UOIt

near the leading edge where our theory is not expected to be accurate

in any event because of the rapidly changing boundary layer thickness.

It can be shown that

IT • A*O + ;1 - d x \Ai + 0 /1-6 x	 \ 2	 (20)
s	 `	 max J	 ` a I

where

2/NAL a	 2	 L (Rd^).
Av R R6 )

t	
2/N

A1* i a	
2)	

r2 L(Rdmaxl-L1
R

(Rdmax)
r

(Rd 	 I N

L(Rd max)	 Iv (R6 max ) 
+ 

I v-1 
CR6

max)	 (21)
IV 6 

max 
1+ I 1-v (R— 

dm

LI (Rdmaja 4 eosn/N 	+ I-v(Rdmaxl2
N+rR6^

/[IV 
(!46 

max)
	J

Substitution of Equation (20) into Equation (18) and the use of the

Fourier convolution theorem gives the wall pressure,

pw 2x, Y) ' PW * rl- d {x_, 	P	 (x,Y)*0(1-6 x ^2	 (22)

ffi1	 pU1 `	 6max pU1 	t dmax

where

Pw0 (x,Y) ° f A (x-x Y-Y', N(x'.Y') dx'dy '	 (23)
U 2	 0 ',	 Ul
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and

•
pwI (x.Y) - Il A1 (x-x 1 . y=Y 1 ). w (x'.y')dx. dy,

PU

Ao and Al are the Fourier inversion of AO* and A1* defined in Equation

(21) and can be evaluated numerically, i.e.

AO (x.Y) ' ( 1 /Z 1l AD a 
i(ax+YY) dady

\ 2a -s

AI (x ,y) ' (1 2 If Al* a i(ox+Yy) dcdy

t 2n)

Here, AO is the same as Ventres' result except his uniform thickness

has been replaced by the maximum thickness 6 max . A I is a new function

used to calculate the pressure correction due to the slowly variation

of the boundary layer, but it is independent of the detailed. variation

of the boundary layer which enters the pressure solution in the factor

(1- a x, )) in Equation (22). One can show that Al vanishes as 6m^
max

approaches zero, a natural result because of the loss of the "variation"

of the boundary layer as the boundary layer vanishes.

Thus we have derived a scheme for calculating the pressure load

on any solid surface which is deformed slightly from its flat position

and exposed to a shear flow whose boundary layer thickness slowly

varies. In aeronautical jargon, we have solved the non-lifting problem

because the equations we have found (Equations (19) and (23)) require

the upwash W(x,y) being given everywhere in the z - 0 plane. For the

technologically more important lifting problem the above Fourier super-

position of the pressure load alone is not sufficient and a slightly
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different procedure is needed as will be seen in the next section-,

(e) The Pressure Load for an Arbitrary Wall Deflection - Lifting Problem

For the lifting problem, it is convenient to write Equation (1S) as

(1 `2 W* ` K pw Ca,Y;d(X,Y))	 (24)
\ 2w U1 oU12

where K is the reciprocal of K defined in Equation (16) and is the same as

D	 Ventres' kernel with his uniform thickness replaced by the variable

(X, Y) i.^, C

R m AV

	

	

/
2/C;/ L 

(R6)

Multiplied by a (ax+Yy)- and integrated over (o,y) space, Equation (24)

results in the following upwash equation.

W (x, y) °rr1 2 If W* a 
i(ax+YYl dady	 (26)

U1	\2n^	 Ul

n 11 K (o,Y;6(x,Y1)- Pw(a,Y;6CX.Y)l ei (ox+Yyl dads

PU

In addition, the superposition result Equation C17) still holds for

the lifting problem, i. e.

Pw (x.Y;a(x,y).) - II Pw (a.Y;s(x.Y)) a i(ax+YY)dady	 C27)

Pula	- PU 21

(2S)
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much can be formally inverted to give

'J

pw(a,Y;a(x,y)) .(1 /2 ff pw Cx'.Y';aCx,Y)) e-iCax'
+Yy')dx,dy,

2w	 CU 2
1

(28)

i

i

In obtaining Equation (20), a(x,y) has been treated as irrelevant to

the integral operation. Note that pw (X',y';a(x ,y)) is not the real

wall pressure as it should have been if x', y' are replaced by x, y.

Substituion of Equation (281 into Equation (26) gives the familiar kernel

function form for the lifting problem.

W (x ,y) 	K(x-x', y-y'; a (x.y)) p,, (x',y';a(x, y)) dx'dy'	 (29)
U1	 wing	 aU ,21
where	 a	

—i(ax+yy)
K(x,y,a(x,y))= ( 1 \ 2 jf K(a,y;a(X.y))e 	 dady	 (30)

` 2n

The domain of integration in Equation (29) is within the wing surface

area because pw = 0 everrihare off the wing for the lifting problem.

The kernel function inversion, Equation (30), can be evaluated semi-ana-

lytically according to Ventres 1191 . A convenient splitting of K

into two parts is

K a Kl+K2
	 (31)

where

Kl A^v R 
r 

Ra 21N ( 1	 1

i a `2 )	 ` L(RS)



—ls —

'r

N

c
i.

K2 = A n ! Zd ?/N	
R,Il

A  - yr 1-v
F a +v

Kl can be inverted numerically to give K 1 and K2 can be inverted

analytically to give K2 so that

K - K
1 
+K 2 	 (32)

For two dimensional shear flow,

2
K
2	 v(x,a(x)) = A ( a 	/N r(2v)eos a ,

7x2 x	 N

and for three dimensional flow

K2(x,y,a (x,y)) _ - 3v Z 6 2/N	 U dU
n	 -^ (^z)3+2/N

Similar to the non-lifting problem an expansion of the tranforned
o

kernel K in terms of the quantity (1 - d x,	 can be made.
a
max

9

r

a

K = KA + (1-6 (x,Y) ) KB* + 0 ( 1-a (x.Y)^ 	 (33)
dmax	 l Amax

where

K 	

d
= AV R Rdmax/N	 L (R6 max)

1. az
(34)



I

16

s
9

Kg ` r a R Zmax ^2/N L16max;	 L (R6max)

L	 m^x	 ' )/
Substitution of Equation (33) into Equation (30) gives

K(x,Y, (X.Y)) ' KA (X,Y) + ( 1-66—X, \KB(x,Y)+Of	 ^

	

l-6 (X y) 2 	 (3S)

where KA and KB are the Fourier inversion of KA* and KB*

respectively, i.e.

m

KA
Cx ,Y) ` 1 2	 K A * e 

i(ax*yy) dady
1 f 1 

and 

	

(36)

K.(x.Y) =(1)2Jf  KB* a 
i(ax+yy) 

dady
 _m

KA is the same as Ventres' K with his uniform thickness replaced by

6max. The numerical inversion of KB* to give KB is straight forward.

Both KA and KB for two dimensional shear flow are shown in Figure 3.

We further assume that

Pw (X.Y;6(x,Y) = Pw0 (x,Y) +/ 1 - 6Lx,y)	 Pwl	 (x,Y)+OF1-a.Gc;Y)^2 (37)

PU1 2 PU 6max	 ) 
TU12

max

which is presumably allowed as far as a(X,y) is not anywhere near zero.

Substituting Equations (35) and (371 into Equation (29)_, one can equate

the terms of zeroth and first powers of (1 - 80"y)) to yield the following
max

two kernel function forms:



cF 
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W(x,Y) a If Kp (x-x ', Y-Y') P (x ,. y , ) dx,dy,

	

U	 wing	 iwo

	

1	 surface	 aUl

r

(38)

and
	 wA

eQ(x,Y) - If	 K4(x-x', Y-Y') Pw (x',y') dx'dy'	 (39)
wing	 1

Ui	 surface	 -19

where Weq is an equivalent upwash in terms of the lowest order solution

Pw0 (x,Y) i.e.

We&x,Y) - II	 - KB (x-x', Y-Y') Pw (x',Y') dx'dy'	 (40)
Wing area	 0

U1
M.

The domains of integration of the integrals in Equations (38), (39) and

(40) cover only the wing surface area because the pressure is zero

everywhere off the wing surface for the lifting surface problem.

Then the solution procedures are

(1) to solve for p  (x,y) from Equation (38) for a given upwash
0

W(x,Y),

(2) to calculate the equivalent upwash Weq(x,y) from Equation (40),

(3) to solve for p  (x,y) from Equation (39), and
1

(4) to form the final solution using Equation (37).

Thus a lifting surface theory for variable thickness shear flow

is completed. It is seen from Equation (37) that the local pressure

depends solely on its local boundary layer thickness for a slowly

varying boundary flow to the lowest order approximation. However,

Equation (29) says that not only the variable d(x,y) should be

g:



Y

included in the kernel functi^)n

appears in the integral equation as the fictitious pressure
,/	 S

Pw(x',y', 6(x,y) which is not the truDwall pressure Pw(x,y;

6(x,y)). The latter was not seen from Ventres' uniform thickness

solution although the replacement of 6 in the kernel function

was suggested, and the expansions, equations (33) and (37) are

required to render the two integral equations (38) and (39) in

conventional kernel function form.

The expansion parameter in the above analysis has been chosen

to be Cl - 6	 ).	 An alternate series expansion can be worked out

Tusing the parameter	 d6 (6:6	 )	 The former expansion involves
dX	 max

the detailed boundary layer thickness variation, while the latter IS

only concernVwith the trailing edge boundary layer thickness

variation.	 However,	 P 
	 in Equations	 (22) and (37) remains the
i

same for both choices of the expansion parameter. 	 Although the

latter expansion is probably formally preferable since a uniform

series convergence is expected, the numerical results shown below

have been carried out using the former.
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IV. PRESENTATION OF COMF:,IATIONAL RESULTS

The shear flow lifting surface theory derived above has been used

to calculate the pressure load on a two dimensional flat plate air-

foil of finite chord in steady shear flow. Both Ventres' uniform

thickness results and the present variable thickness results are

presented for comparison. The familiar collocation method was used.

The pressure was expanded as a linear combination of selected modal

functions and the i.ipuash was matched at all the collocation points

The assumed modal functions, (x/c)n(/(x/c) for n = 0, 1, 2,....,

are equivalent to but slightly different from those used by Ventres(191.

The details can be found in his paper and are not elaborated here. Shoani

below are (a) the pressure distributions, (b) the total lift coefficients,

and (c) the corresponding center of pressure travel for a turbulent

shear flow model. In addition, a lift coefficent result for a laminar

shear flow model is given. For the turbulent shear flow case, the

boundary l ayer was assumed to 	 4/5
y y	 grow according to S(x)/6mar = (x/c)

For the laminar shear flow case, it is assumed that d(x)/6 	 =
max

(x/ )1/2.c

(a) Pressure Distributions - Turbulent Boundary Layer

Figures 4 and 5 show typical pressure distributions along the

chord for two different ratios of the trailing edge boundary layer

thickness to the chord length. The exponent N in the velocity

power law is chosen as 7. It is seen that the variable thickness

curve fits in between the potential flow (top curve) and the uniform

shear (lower curve) results. The thicker the boundary layer is,

,a

r

r

r:
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the larger the shear layer effect is on the pressure load. This

is moistly due to the augmentation of the momentum thickness of

the boundary layer which reduces the momentum transferred to the

perturbed surface. Similar results for the N = 11 case have

been calculated and show less shear effect because the N - 11

case is closer to the potential flow (N - m) than N = 7 case

as far as the mean flow velocity distribution is concerned.

(b) Lift Coefficients - Turbulent Boundary Layer

The normalized lift coefficients are plotted in Figures 6

and 7 for N - 7 and N - 11 cases. Figure 6 indicates a A

increase in the total lift for the variable 6 compared to the

uniform 6 case corresponding to 6 
max/ c = . l and N - 7. Figure

7 shows less change as expected. The reduction of lift coeffici-

ents is a natural result of the pressure decrease due to the

existence of the shear layer.

(c) Center of Pressure Positions - Turbulent Boundary Layer

Figures 8 and 9 demonstrate the shear layer effect on the

center of pressure location. It is seen that the thicker boundary

layers result in further backward movement of the center of

pressure behind the quarter chord. This is caused by the more sig-

nificant pressure reduction near the loading edge than that near

the trailing edge for the shear flow.

(d) Lift Coefficient for A Laminar Boundary Layer Flow

Figure 10 shows the calculated lift coefficient for a

laminar flow. The choice of N= 2.1 simulates the Blasius'

laminar boundary layer velocity profile in an approximate way

as shown in Figure 11. The choice of N = 2 . 1 instead of N = 2 is

.^..	 ^._._.	 a^..,.....^.:.,. ..^..s..........-.m;^.^_,.^.,,»n,..,.:..^..^.. 	 _:.	 ,.......^__.	 ._ ..___^	 ._ ....._,..	 ..	 ..... ,.^..._	 ^ .^..	 ,..yam



because the kernel function is singular at N = 2. Due to this

singularity the accuracy of the laminar result is som--what suspect

although Figure lD shows the same tendency as the turbulent result.

For N n 2 the present theory simply predicts zero lift. This is

because the kernel function tends to infinity everywhere as N - 2

and hence one must have zero wall pressure to balance the finite

upwash on the left hand side of the equation (38). This fact

points out the limit of validity of the present shear flow model

for (noarly) laminar mean flow. Thus, one ought to include the

viscosity effect,which is neglected in our shear flow model, in

the analysis for the laminar boundary layer or,equivalently, postu-

late a finite wall velocity according to Lighthill(3].

1	 `

3

r
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V. CONCLUSION

A method of calculating the pressure distribution en lifting

surfaces in incompressible shear flows with slowly varying boundary

layer thickness has been developed. The assumed mean flow velocity

profile, u/U	(z/d(x ,y))N, is a good approximation for turbulant
1

boundary layers at high Reynold ' s numbers, although it predicts an in-

finite wall shear stress. An interesting point of using this velocity

profile is the assumed zero mean flow velocity at the wall which avoids

the problem of postulating a finite wall velocity as many authors have

done. In any case the boundary layer reduces the pressure load com-

pared to the potential flow, but the variable thickness shear flow

model reduces it less for equal maximum shear layer thickness.

The present theory for the variable thickness problem has been

worked out in detail for the steady, incompressible case. Its extension

to three dimensional, unsteady compressible flows seems to be workable.

However, a question does arise as to whether the assumed pressure mode

functions for supersonic flows should satisfy the kutta condition at

the trailing edge. This is not clear because the flow is subsonic near

the solid surface and is supersonic away from the surface.

4
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AF?ENDI%

STEADY AIRFOIL NOTION IN A SHEAR LAYER OF VARIABLE THICKNESS

We first consider for simplicity two-dimensional flow; it will

be clear that the basic result'hblds in three -dimensions. Beginning

with the equations of a fully viscous flow (Navier-Stokes equations)(221,

au + aw a 0	 continuity (1)
Tx_ az

u au + w au = - (1/ ap	 v ( a 2u a 2u	 streamwise
Tx_	 az 	 a / ax	 \ axT '3Z^	 x - component of

momentum balance (2)

u aw + w aw- (1/	 + v a2w + a 2w	 transverse
S7	 8z	 a^ 2	 87 5Z 	 z - component of

momentum balance (3).

We now construct an order of magnitude analysis of the various terms.

For this purpose several scale factors are introduced. The boundary

layer thickness, 6 , is a characteristic length of the mean (shear)
flow in the z direction; k is t characteristic leng.h in the x direct-

ion associated with the growth of the boundary layer thickness; and a is

a characteristic length in the x direction associated with the variation

of airfoil upwash or ankle of attack. First consider the mean flow with no

upwash or angle of attack perturbation. We assume that

2 v 
1/6	 (4)

az

6/R << 1-

Tx_

and
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From continuity,

n^5

0 tu/R 1 #0 ( W/ O, ) - 0 ; w 'U u d/ z 	(S)

From x - momentum,

0 ( Rz ` + 0 / ML)  n - (1/p ) 8p + 0 ( vu ) + 0 ( vu	 (6)

Using (5), the two terms on the left hand side of (6) are seen to be

of the same order. On the right hand side, the second term may be

neglected compared to the last and the latter we require to balance with

the left hand side

0 (R21ti 0 (_vz)

Thus

a/t ro 0	 Ref-1/2

	
(7)

where the Reynolds number is given by

Re = uR
V

4

I

L

s

l

a

i

1

7

From z - momentum,
r

0 (Iff) +0 (12^ 0 — (1/p )	 +0 / pZ ` +0 	 (8)

f'	
Using (5) and (7), we conclude from C6) that
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- (1/p) p, , 0 ( RZ )

and from (8)_

1/0 ) b- ti U (u2 a )
a 	 Z i

Thus

ap <` ?P
az	 ax

and the mean pressure is essentially constant through the boundary layer.

These results are well-known, of course, and due to Prandt1 22 . We

shall use a similar approach for the perturbation equations where

there is a non-zero upwash or angle of attack.

Let

u (x,z) - u(x,z) + fl(x,z)

w (x # z) - w(x,z) + ti(x,z)
	

(9)

p (x, Z) = p (x,zl + PCx,Z)

where - denotes mean flow and 	 perturbation. From our previous

analysis we note that p (x,zl p(x).. Substituting (9) into Cl),

(2), (3). and subtracting out the mean flow equations one obtains the

perturbation equations. These are

continuity	 (l0)an+awao
ax az

uaft +Q au+w aft +q au
az az aX az



+ V 2, + 320[3 Zl

q—X7 a =z
X-momentum	 (11)

34 + a	 + w af, + a 37

l/P) 2L +	 v	 320 + a2g

az	 3xT —57 Z-momentum (12)

We assume that

j( ) r-	 (	 ; 3C)	 C-)/t
3z ax ax

and 8
a/	 "	 0 (l) (13)a

a <<

Other interesting cases could be considered; for example,	 6/a >> I

or	 << 1. However, we shall not pursue these here.

From continuity,

0 + 0	 0 -. a lu Q a/ (14)
a

a

From	 x momentum,

0 (uh ) + 0 ^^071L	 + 0	 0 asiT

Cl/
P

o	 + 0

4a

+	 0	 ( Vol

ax =6

7

-26-
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In the above, we have used (S) and (14) to replace w, 0 and

indicated by an arrow negligibly small terms. By the assumption of

6/a ti 0(l), the last two terms on the RHS of (1S) are of the same

order. Let us compare the latter of these to the (remaining) terms

on the LHS. Recall from (7) that

(6/112

uk

Thus

va ti uQ
a	 R

which is negligible compared to LHS of (15). Hence, x-momentum equation

simplifies to

az	 az	 o ax
	 (16)

Note that if a ti k , then one must include viscous terms and hence

the basic validity of a shear flow, as opposed to a fully viscous

model is dependent upon a << 1. Formally Lair- need not be true for

turbulent flow where [22]

.vim.
ux

However, then the question arises as to what viscosity coefficient

one should use[B].

From z-momentum,

i
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0 /g o a + 0 Q u	 + 0 u a

	

1 i s}	 a R

+ 0 ra M.-C- (1/ 1	 + 0 ' a a	 (17)

	

ra 7	 az	 a

where we have used (S), (7) and (14) to simplify terms in (17) and

indicated by an arrow those which are negligibly small. Thus the

z-momentum equation becomes

	

az	 P az

Our final equations are then (10), (16) and (18). Using these we may

obtain a single equation for p,

	

v2p - 2 aU 22 - 3p —	 0	 (19)
az az	 a Sx

	

U	 U

where the last term may be neglected consistent with our previously

announced assumptions on the various length scales. Note that we

have dropped the ,. and replaced u by U.
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